Jumat, 17 April 2009

Membuat virus macro sendiri

Berdasarkan sifat dan penyerangannya, virus komputer dapat dibedakan menjadi beberapa macam, misalnya virus boot sector, virus file, polymorphic virus, stealth virus, dan virus makro. Virus makro ini dapat menyerang pada dokumen MS Word, Excel atau Power Point. Virus makro ini termasuk virus yang paling banyak dijumpai di sekitar kita. Tentunya kita masih ingat dengan adanya virus Mellisa atau virus I Love You yang juga dapat kita masukkan ke dalam kategori virus macro.

Mengapa virus makro ini sering sekali kita jumpai? Jawabnya tentu saja karena populasi pengguna MS Office sangat banyak. Dengan pengguna yang cukup banyak tentunya virus makro dapat berkembang dengan cepat. Dengan melakukan pertukaran data *.doc (dokumen MS Word) yang telah terinfeksi maka sudah cukup untuk membuat semua dokumen menjadi terinfeksi.

Yang menarik, bagaimana cara membuat virus makro tersebut? Kalau Anda seorang programmer, dengan bantuan berbagai referensi tentunya mudah saja untuk belajar membuat virus makro. Masalahnya bagaimana kalau kita sama sekali tidak menguasai bahasa pemrograman?

Tenang saja, di internet banyak sekali software yang dapat digunakan untuk membuat virus makro. Salah satunya adalah SkamWerks Lab. Dengan fasilitas Virii Wizard, kita dapat membuat virus mulai dari awal sampai selesai. Saat menggunakan Virii Wizard, kita dapat menuliskan pembuat virusnya, nama virus, dan makro-makro yang akan dimasukkan ke dalam virus. Nah, daripada penasaran, silakan Anda cepat-cepat mencobanya sendiri. Tentunya setelah Anda mendownload programnya di sini.

Jika berminat, Anda bisa mendapatkan software-software lain yang dapat digunakan untuk membuat virus di sini. Koleksinya sangat lengkap!

Selamat mencoba!

Sabtu, 14 Maret 2009

Fluida Dinamis

Pengantar Fluida Dinamis

Sebelumnya kita sudah bergulat dengan Fluida Statis. Nah, kali ini kita akan bergulat dengan sahabat fluida statis, yakni Fluida Dinamis. Kalau dalam pokok bahasan Fluida Statis kita belajar mengenai fluida diam, maka dalam fluida dinamis kita akan mempelajari fluida yang bergerak. Fluida itu sendiri merupakan zat yang dapat mengalir (zat cair & gas), tapi maksud gurumuda, dalam fluida statis, kita mempelajari fluida ketika fluida tersebut sedang diam alias tidak bergerak. Sedangkan dalam fluida dinamis, kita menganalisis fluida ketika fluida tersebut bergerak.

pengantar fluida dinamis-1Aliran fluida secara umum bisa kita bedakan menjadi dua macam, yakni aliran lurus alias laminar dan aliran turbulen. Aliran lurus bisa kita sebut sebagai aliran mulus, karena setiap partikel fluida yang mengalir tidak saling berpotongan. Salah satu contoh aliran laminar adalah naiknya asap dari ujung rokok yang terbakar. Mula-mula asap naik secara teratur (mulus), beberapa saat kemudian asap sudah tidak bergerak secara teratur lagi tetapi berubah menjadi aliran turbulen. Aliran turbulen ditandai dengan adanya linkaran-lingkaran kecil dan menyerupai pusaran dan kerap disebut sebagai arus eddy. Contoh lain dari aliran turbulen adalah pusaran air. Aliran turbulensi fluidaturbulen menyerap energi yang sangat besar. jadi dirimu jangan heran kalau badai datang melanda, semua yang dilalui badai tersebut hancur berantakan. Yang gurumuda maksudkan adaah badai yang membentuk pusaran alias putting beliung. Aliran turbulen ini sangat sulit dihitung.

Sebelum melangkahlebih jauh, alangkah baiknya jika kita mengenali ciri-ciri umum lainnya dari aliran fluida.

1. Aliran fluida bisa berupa aliran tunak (steady) dan aliran tak tunak (non-steady). Maksudnya apa sich aliran tunak dan tak-tunak ? mirp seperti tanak menanak nasi.. hehe… aliran fluida dikatakan aliran tunak jika kecepatan setiap partikel di suatu titik selalu sama. Katakanlah partikel fluida mengalir melewati titik A dengan kecepatan tertentu, lalu partikel fluida tersebut mengalir dengan kecepatan tertentu di titik B. nah, ketika partikel fluida lainnya yang nyusul dari belakang melewati titik A, kecepatan alirannya sama dengan partikel fluida yang bergerak mendahului mereka. Hal ini terjadi apabila laju aliran fluida rendah alias partikel fluida tidak kebut-kebutan. Contohnya adalah air yang mengalir dengan tenang. Lalu bagaimanakah dengan aliran tak-tunak ? aliran tak tunak berlawanan dengan aliran tunak. Jadi kecepatan partikel fluida di suatu titik yang sama selalu berubah. Kecepatan partikel fluida yang duluan berbeda dengan kecepatan partikel fluida yang belakangan (sstt… jangan lupa perbedaan antara kecepatan dan kelajuan ya)

2. Aliran fluida bisa berupa aliran termampatkan (compressible) dan aliran tak-termapatkan (incompressible). Jika fluida yang mengalir mengalami perubahan volum (atau massa jenis) ketika fluida tersebut ditekan, maka aliran fluida itu disebut aliran termapatkan. Sebaliknya apabila jika fluida yang mengalir tidak mengalami perubahan volum (atau massa jenis) ketika ditekan, maka aliran fluida tersebut dikatakan tak termampatkan. Kebanyakan zat cair yang mengalir bersifat tak-termampatkan.

3. Aliran fluida bisa berupa aliran berolak (rotational) dan aliran tak berolak (irrotational). Wow, istilah apa lagi ne… untuk memahaminya dengan mudah, dirimu bisa membayangkan sebuah kincir mainan yang dibuang ke dalam air yang mengalir. Jika kincir itu bergerak tapi tidak berputar, maka gerakannya adalah tak berolak. Sebaliknya jika bergerak sambil berputar maka gerakannya kita sebut berolak. Contoh lain adalah pusaran air.

4. Aliran fluida bisa berupa aliran kental (viscous) dan aliran tak kental (non-viscous). Kekentalan dalam fluida itu mirip seperti gesekan pada benda padat. Makin kental fluida, gesekan antara partikel fluida makin besar. Mengenai viskositas alias kekentalan akan kita kupas tuntas dalam pokok bahasan tersendiri.

Nah, setelah dirimu berkenalan dengan sifat-sifat aliran fluida di atas, gurumuda ingin mengatakan kepada dirimu bahwa dalam pokok bahasan Fluida Dinamis, pembahasan kita hanya terbatas pada aliran fluida yang tunak, tak-kental, tak-temampatkan dan tak-berolak.

Sekian pengantar dari gurumuda, sekarang tarik napas pendek sepuas-puasnya untuk melanjutkan perjalanan kita…

Persamaan Kontinuitas

fluidaPengantar

Sebelum kita belajar tentang persamaan kontinuitas, gurumuda ingin mengajak dirimu untuk bermain dengan air. Hehe… di rumah punya kran air khan ? kalau tidak punya, bisa pinjam punya tetangga. Bilang saja, pak/bu, pinjam kran airnya ya, sebentar saja.. pliss… demi kemajuan ilmu fisika. Terus merenggek saja gpp, nanti juga diberi ;) coba dirimu buka kran air perlahan-lahan sambil memperhatikan laju air yang keluar dari mulut kran. Setelah kran tidak bisa diputar lagi, sumbat sebagian mulut kran dengan tanganmu. Sekarang bandingkan, manakah laju aliran air yang lebih besar. Ketika sebagian mulut kran disumbat atau tidak disumbat ? kalau dirimu punya slang yang biasa dipakai untuk menyiram bunga, coba alirkan air melalui slang tersebut. Nah,persamaan-kontinuitas silahkan tutup sebagian mulut selang dengan tangan atau jarimu. Semakin banyak bagian mulut selang yang ditutup, semakin deras air menyembur keluar (laju aliran air makin besar). Sebaliknya, jika mulut slang tidak ditutup, aliran air menjadi seperti semula (kurang deras). Aneh khan ? mengapa bisa demikian ? agar bisa memahami “keanehan” ini, silahkan pelajari pokok bahasan ini dengan penuh semangat. Setelah mempelajari persamaan kontinuitas, dirimu bisa menjelaskannya dengan mudah…

Garis Arus dan Tabung Alir

Sebelum melangkah lebih jauh, terlebih dahulu kita pahami konsep Garis Alir, Garis Arus dan Tabung Alir. Konsep ini penting, karena akan membantu dirimu untuk memahami persamaan kontinuitas.

Garis Arus (stream line)

Selain Garis Alir, ada juga namanya Garis Arus. Untuk memudahkan pemahamanmu, gurumuda menggunakan gambar. Perhatikan gambar di bawah. Garis yang berwarna biru merupakan Garis Arus.

2-garis-arusPada aliran tunak, kecepatan setiap partikel fluida di suatu titik, katakanlah titik A (lihat gambar) selalu sama. Ketika melewati titik B, kecepatan partikel fluida mungkin berubah. Walaupun demikian, ketika tiba di titik B, partikel fluida yang nyusul dari belakang mengalir dengan kecepatan yang sama seperti partikel fluida yang mendahuluinya. Demikian juga ketika tiba di titik C dan seterusnya. Nah, garis Arus itu merupakan kurva yang menghubungkan titik A,B dan C (catatan : ingat ya, kecepatan itu beda dengan kelajuan. Kecepatan punya arah)

Tabung Alir (flow tube)

Istilah makin aneh saja. Ada Garis lah, ada tabung lah… hehe…. Tabung Alir tuh maksudnya apa ? silahkan perhatikan gambar di bawah…

3-tabung-alir

Pada dasarnya kita bisa menggambarkan setiap garis arus melalui tiap-tiap titik dalam aliran fluida tersebut. Jika kita menggangap aliran fluida tunak, sejumlah garis arus yang melewati sudut tertentu pada luas permukaan imajiner (luas permukaan khayalan) membentuk suatu tabung aliran. Tidak ada partikel fluida yang saling berpotongan tapi selalu sejajar dan tabung aliran tersebut akan menyerupai sebuah pipa yang bentuknya selalu sama. Fluida yang masuk pada salah satu ujung tabung akan keluar dari tabung tersebut di ujung lainnya.

Debit

Dalam kehidupan sehari-hari orang sering menggunakan istilah “Debit”. Btw, Debit itu sebenarnya apa ?

Debit itu menyatakan volume suatu fluida yang mengalir melalui penampang tertentu dalam selang waktu tertentu. Secara matematis, bisa dinyatakan sebagai berikut :

6-kontinuitas4Untuk menambah pemahamanmu, kita gunakan contoh. Misalnya fluida mengalir melalui sebuah pipa. Pipa biasanya berbentuk silinder dan memiliki luas penampang tertentu. Pipa tersebut juga punya panjang (Lihat gambar di bawah).

4-debit1Ketika fluida mengalir dalam pipa tersebut sejauh L, misalnya, maka volume fluida yang ada dalam pipa adalah V = AL (V = volume fluida, A = luas penampang dan L = panjang pipa). Karena selama mengalir dalam pipa sepanjang L fluida menempuh selang waktu tertentu, maka kita bisa mengatakan bahwa besarnya debit fluida :

7-kontinuitas
Dengan demikian, ketika fluida mengalir melalui suatu pipa yang memiliki luas penampang dan panjang tertentu selama selang waktu tertentu, maka besarnya debit fluida (Q) tersebut sama dengan luas permukaan penampang (A) dikalikan dengan kecepatan aliran fluida (v). Dipahami perlahan-lahan ya… Jika bingung berlanjut, silahkan hubungi dokter terdekat :) Pemahaman akan konsep debit ini sangat penting karena akan membantu dirimu memahami dengan baik persamaan kontinuitas.

Persamaan Kontinutitas

Penjelasan sebelumnya yang bertele-tele tersebut hanya mau mengantar dirimu untuk mempelajari persamaan kontinuitas, inti dari tulisan ini. Sekarang, mari kita tinjau aliran fluida pada sebuah pipa yang mempunyai diameter berbeda, seperti tampak pada gambar di bawah.

5-kontinuitas2Gambar ini menujukan aliran fluida dari kiri ke kanan (fluida mengalir dari pipa yang diameternya besar menuju diameter yang kecil). Garis putus-putus merupakan garis arus.

Keterangan gambar : A1 = luas penampang bagian pipa yang berdiameter besar, A2 = luas penampang bagian pipa yang berdiameter kecil, v1 = kecepatan aliran fluida pada bagian pipa yang berdiameter besar, v2 = kecepatan aliran fluida pada bagian pipa yang berdiameter kecil, L = jarak tempuh fluida.

Pada pengantar fluida dinamis, gurumuda telah menjelaskan bahwa dalam fluida dinamis, kita membahas aliran fluida yang tak termampatkan, tak kental, tak berolak dan tunak. Sebaiknya dibaca terlebih dahulu penjelasan sebelumnya, biar lebih nyambung. Lanjut ya…

Pada aliran tunak, kecepatan aliran partikel fluida di suatu titik sama dengan kecepatan aliran partikel fluida lain yang melewati titik itu. Aliran fluida juga tidak saling berpotongan (garis arusnya sejajar). Karenanya massa fluida yang masuk ke salah satu ujung pipa harus sama dengan massa fluida yang keluar di ujung lainnya. Jika fluida memiliki massa tertentu masuk pada pipa yang diameternya besar, maka fluida tersebut akan keluar pada pipa yang diameternya kecil dengan massa yang tetap. Waduh, bingung-kah ? dipahami perlahan-lahan ya…

Sekarang, mari kita perhatikan gambar pipa di atas. Kita tinjau bagian pipa yang diameternya besar dan bagian pipa yang diameternya kecil.

Selama selang waktu tertentu, sejumlah fluida mengalir melalui bagian pipa yang diameternya besar (A1) sejauh L1 (L1 = v1t). Volume fluida yang mengalir adalah V1 = A1L1 = A1v1t. Nah, Selama selang waktu yang sama, sejumlah fluida yang lain mengalir melalui bagian pipa yang diameternya kecil (A2) sejauh L2 (L2 = v2t). Volume fluida yang mengalir adalah V2 = A2L2 = A2v2t. (sambil lihat gambar di atas).

Persamaan Kontinuitas untuk Fluida Tak-termampatkan (incompressible)

Pertama-tama mari kita tinjau kasus untuk Fluida Tak-termampatkan. Pada fluida tak-termampatkan (incompressible), kerapatan alias massa jenis fluida tersebut selalu sama di setiap titik yang dilaluinya.

Massa fluida yang mengalir dalam pipa yang memiliki luas penampang A1 (diameter pipa yang besar) selama selang waktu tertentu adalah :

8-kontinuitasDemikian juga, massa fluida yang mengalir dalam pipa yang memiliki luas penampang A2 (diameter pipa yang kecil) selama selang waktu tertentu adalah :

9-kontinuitas

Mengingat bahwa dalam aliran tunak, massa fluida yang masuk sama dengan massa fluida yang keluar, maka :

10-kontinuitas

Catatan : massa jenis fluida dan selang waktu sama sehingga dilenyapkan.

Jadi, pada fluida tak-termampatkan, berlaku persamaan kontinuitas :

A1v1 = A2v2Persamaan 1

Di mana A1 = luas penampang 1, A2 = luas penampang 2, v1 = kecepatan aliran fluida pada penampang 1, v2 = kecepatan aliran fluida pada penampang 2. Av adalah laju aliran volume V/t alias debit (sudah gurumuda jelaskan di atas)

Persamaan 1 menunjukkan bahwa laju aliran volume alias debit selalu sama pada setiap titik sepanjang pipa/tabung aliran. Ketika penampang pipa mengecil, maka laju aliran fluida meningkat (fluida kebut2an), sebaliknya ketika penampang pipa menjadi besar, laju aliran fluida menjadi kecil. Agar dirimu semakin paham, silahkan obok-obok persamaan 1 dengan memasukan angka tertentu.

kontinuitasPada bagian pengantar tulisan ini, gurumuda mengajak dirimu untuk bermain dengan air. Ketika sebagian mulut kran kita sumbat, aliran air menjadi lebih deras dibandingkan ketika sebagian mulut kran tidak kita tutup. Hal itu disebabkan karena luas penampang kran menjadi kecil ketika sebagian mulut kran kita tutup, sehingga laju aliran air bertambah (fluida mengalir deras). Demikian juga pada kasus slang. Tapi perlu dirimu ketahui bahwa debit alias laju aliran volume selalu sama pada stiap tempat sepanjang aliran air, baik ketika sebagian mulut kran kita tutup maupun tidak. Jadi yang berubah adalah laju aliran fluida tersebut. Ssttt… laju aliran volume tuh maksudnya jumlah volume fluida yang mengalir dalam satu satuan waktu. Jangan pake bingung ya :)

fluida dinamis-1Lalu bagaimana dengan kasus aliran air di sungai ? Bagian sungai yang dalam memiliki penampang yang lebih besar dibandingkan dengan bagian sungai yang dangkal, sehingga laju aliran air pada bagian sungai yang dalam lebih kecil dari pada laju aliran air pada bagian sungai yang dangkal. Kalau dirimu melihat aliran air sungai sangat tenang, itu artinya bagian sungai itu dalam. Tapi kalau tiba-tiba aliran air sungai menjadi deras, maka bagian sungai itu pastifluida dinamis-3 dangkal. Walaupun demikian, laju aliran volume air selalu sama, baik pada bagian dalam maupun pada bagian sungai yang tenang.

Persamaan Kontinuitas untuk Fluida Termampatkan (compressible)

Untuk kasus fluida yang termampatkan alias compressible, massa jenis fluida tidak selalu sama. Dengan kata lain, massa jenis fluida berubah ketika dimampatkan. Kalau pada fluida Tak-termampatkan massa jenis fluida tersebut kita lenyapkan dari persamaan, maka pada kasus ini massa jenis fluida tetap disertakan. Dengan berpedoman pada persamaan yang telah diturunkan sebelumnya, mari kita turunkan persamaan untuk fluida termampatkan.

Mengingat bahwa dalam aliran tunak, massa fluida yang masuk sama dengan massa fluida yang keluar, maka :

11-kontinuitas

Ini adalah persamaan untuk kasus fluida termampatkan. Bedanya hanya terletak pada massa jenis fluida. Apabila fluida termampatkan, maka massa jenisnya berubah. Sebaliknya, apabila fluida tak termampatkan, massa jenisnya selalu sama sehingga bisa kita lenyapkan. Untuk lebih memahami hubungan antara massa jenis dan fluida termampatkan/tak-termampatkan, silahkan pelajari pembahasan mengenai Tekanan Pada Fluida (Fluida Statis).

Sekian pelajaran kita kali ini, mohon maaf lahir batin jika dirimu mual-mual atau pusing-pusing :) tarik napas panjang seribu kali dan bersiap-siaplah melanjutkan perjalanan kita menuju pembahasan berikutnya


Persamaan Bernoulli


Pengantar

Dirimu bisa mengendarai sepeda motor khan ? ketika kita mengendarai sepeda motor agak kencang, baju yang kita pakai biasanya mengembung ke belakang. Atau kalau dirimu belum bisa mengendarai sepeda motor, coba perhatikan ayah/ibu/teman2 yang mengendarai sepeda motor. Bagian belakang baju yang dipakai biasanya kembung ke belakang kalau sepeda motornya melaju dengan kencang. Kok bisa ya ? bukan cuma itu… kadang kalau angin bertiup kencang, pintu rumah bisa ketutup sendiri. Padahal anginnya bertiup di luar rumah, sedangkan daun pintu ada di dalam rumah.

Dirimu bingung-kah ? Tuh mah gampang, bisa dijelaskan dengan mudah asal dirimu paham prinsip om Bernoulli. Om Daniel Bernoulli (1700-1782) menemukan sebuah prinsip yang bisa digunakan untuk menjelaskan keanehan di atas. Btw, prinsip Bernoulli tu apa ? terus apa bedanya dengan persamaan Bernoulli ? Sekarang bersiap-siaplah bergulat dengan om Bernoulli… wah, Om Bernoulli ini bikin pelajaran fisika tambah banyak saja… hehe :)

Prinsip Bernoulli

Prinsip Bernoulli menyatakan bahwa di mana kecepatan aliran fluida tinggi, tekanan fluida tersebut menjadi rendah. Sebaliknya jika kecepatan aliran fluida rendah, tekanannya menjadi tinggi.

Ketika sepeda motor bergerak dengan cepat, maka kecepatan udara di bagian depan dan samping tubuhmu tinggi. Dengan demikian, tekanan udara menjadi rendah. Nah, bagian belakang tubuhmu terhalangi bagian depan tubuhmu, sehingga kecepatan udara di bagian belakang tubuhmu tidak berubah menjadi tinggi (tepat di bagian belakang tubuhmu). Akibatnya tekanan udara di bagian belakang tubuhmu menjadi lebih besar. Karena ada perbedaan tekanan udara, di mana tepat di bagian belakang tubuh tekanan udara lebih besar maka udara mendorong bajumu ke belakang sehingga bajumu kelihatan kembung ke belakang.

Bagaimana dengan daun pintu rumah yang menutup sendiri ketika angin bertiup kencang di luar rumah ? udara yang ada di luar rumah bergerak lebih cepat daripada udara yang ada di dalam rumah. Akibatnya, tekanan udara di luar rumah lebih kecil dari tekanan udara dalam rumah. Karena ada perbedaan tekanan, di mana tekanan udara di dalam rumah lebih besar, maka pintu didorong keluar. Dengan kata lain, daun pintu bergerak dari tempat yang tekanan udaranya besar menuju tempat yang tekanan udaranya kecil.

Persamaan Bernoulli

Sebelumnya kita telah belajar mengenai prinsip Om Bernoulli. Nah, Om Bernoulli juga mengembangkan prinsipnya itu secara kuantitatif. Untuk menurunkan persamaan Bernoulli, kita anggap aliran fluida tunak & laminar, tak-termampatkan alias tidak bisa ditekan, viskositas alias kekentalannya juga kecil sehingga bisa diabaikan.

Pada pembahasan mengenai Persamaan Kontinuitas, kita sudah belajar bahwa laju aliran fluida juga dapat berubah-ubah tergantung luas penampang tabung alir. Berdasarkan prinsip om Bernoulli yang dijelaskan di atas, tekanan fluida juga bisa berubah-ubah tergantung laju aliran fluida tersebut. Selain itu, dalam pembahasan mengenai Tekanan Pada Fluida (Fluida Statis), kita juga belajar bahwa tekanan fluida juga bisa berubah-ubah tergantung pada ketinggian fluida tersebut. Nah, hubungan penting antara tekanan, laju aliran dan ketinggian aliran bisa kita peroleh dalam persamaan Bernoulli. Persamaan bernoulli ini sangat penting karena bisa digunakan untuk menganalisis penerbangan pesawat, pembangkit listrik tenaga air, sistem perpipaan dkk.

Agar persamaan Bernoulli yang akan kita turunkan berlaku secara umum, maka kita anggap fluida mengalir melalui tabung alir dengan luas penampang yang tidak sama dan ketinggiannya juga berbeda (lihat gambar di bawah). Untuk menurunkan persamaan Bernoulli, kita terapkan teorema usaha dan energi pada fluida dalam daerah tabung alir (ingat kembali pembahasan mengenai usaha dan energi). Selanjutnya, kita akan memperhitungkan banyaknya fluida dan usaha yang dilakukan untuk memindahkan fluida tersebut.

bernoulli-1

Warna buram dalam tabung alir pada gambar menunjukkan aliran fluida sedangkan warna putih menunjukkan tidak ada fluida.
Fluida pada luas penampang 1 (bagian kiri) mengalir sejauh L1 dan memaksa fluida pada penampang 2 (bagian kanan) untuk berpindah sejauh L2. Karena luas penampang 2 di bagian kanan lebih kecil, maka laju aliran fluida pada bagian kanan tabung alir lebih besar (Ingat persamaan kontinuitas). Hal ini menyebabkan perbedaan tekanan antara penampang 2 (bagian kanan tabung alir) dan penampang 1 (bagian kiri tabung alir) - Ingat prinsip Bernoulli. Fluida yang berada di sebelah kiri penampang 1 memberikan tekanan P1 pada fluida di sebelah kanannya dan melakukan usaha sebesar :

bernoulli-2
Maka persamaan W1 bisa ditulis menjadi :
W1 = P1A1L1
Pada penampang 2 (bagian kanan tabung alir), usaha yang dilakukan pada fluida adalah :
W2 = -P2A2L2

Tanda negative menunjukkan bahwa gaya yang diberikan berlawanan dengan arah gerak. Jadi fluida melakukan usaha di sebelah kanan penampang 2.
Di samping itu, gaya gravitasi juga melakukan usaha pada fluida. Pada kasus di atas, sejumlah massa fluida dipindahkan dari penampang 1 sejauh L1 ke penampang 2 sejauh L2, di mana volume fluida pada penampang 1 (A1L1) = volume fluida pada penampang 2 (A2L2). Usaha yang dilakukan oleh gravitasi adalah :

W3 = -mg(h2-h1)
W3 = mgh1 - mgh2

Tanda negative disebabkan karena fluida mengalir ke atas, berlawanan dengan arah gaya gravitasi. Dengan demikian, usaha total yang dilakukan pada fluida sesuai dengan gambar di atas adalah :

W = W1 + W2 + W3
W = P1A1L1 - P2A2L2 + mgh1 - mgh2

Sampai di sini tarik napas pendek 1000 kali dulu… :) Waduh pusink ;)

Teorema usaha-energi menyatakan bahwa usaha total yang dilakukan pada suatu sistem sama dengan perubahan energi kinetiknya. Dengan demikian, kita bisa menggantikan Usaha (W) dengan perubahan energi kinetik (EK2 - EK1). Persamaan di atas bisa kita tulis lagi menjadi :

W = P1A1L1 - P2A2L2 + mgh1 - mgh2
EK2 - EK1 = P1A1L1 - P2A2L2 + mgh1 - mgh2
½ mv22 - ½ mv12 = P1A1L1 - P2A2L2 + mgh1 - mgh2

Ingat bahwa massa fluida yang mengalir sejauh L1 pada penampang A1 = massa fluida yang mengalir sejauh L2 (penampang A2). Sejumlah massa fluida itu, sebut saja m, mempunyai volume sebesar A1L1 dan A2L2, di mana A1L1 = A2L2 (L2 lebih panjang dari L1).

bernoulli-3bernoulli-4bernoulli-5

Ini adalah persamaan Om Bernoulli. Persamaan om Bernoulli ini kita turunkan berdasarkan prinsip usaha-energi, sehingga merupakan suatu bentuk Hukum Kekekalan Energi

bernoulli-61

Ruas kiri dan ruas kanan pada persamaan Bernoulli di atas bisa mengacu pada dua titik di mana saja sepanjang tabung aliran sehingga kita bisa menulis kembali persamaan di atas menjadi :

bernoulli-7Persamaan ini menyatakan bahwa jumlah total antara besaran-besaran dalam persamaan mempunyai nilai yang sama sepanjang tabung alir.

Sekarang mari kita tinjau persamaan Bernoulli untuk beberapa kasus.

Persamaan Bernoulli pada Fluida Diam

Kasus khusus dari persamaan Bernoulli adalah untuk fluida yang diam (fluida statis). Ketika fluida diam alias tidak bergerak, fluida tersebut tentu saja tidak punya kecepatan. Dengan demikian, v1 = v2 = 0. Pada kasus fluida diam, persamaan Bernouli bisa kita rumuskan menjadi :

bernoulli-8

Persamaan Bernoulli pada Tabung Alir atau Pipa yang ketinggiannya sama

Jika ketinggian tabung alir atau pipa sama, maka persamaan Bernoulli bisa dioprek menjadi :

bernoulli-9

Penerapan Prinsip dan Persamaan Bernoulli

Sebelumnya, kita sudah belajar mengenai Prinsip dan Persamaan Bernoulli. Kali ini kita akan melihat penerapan prinsip dan persamaan Bernoulli dalam kehidupan sehari-hari.

Teorema Torriceli

Salah satu penggunaan persamaan Bernoulli adalah menghitung kecepatan zat cair yang keluar dari dasar sebuah wadah (lihat gambar di bawah)

penerapan-prinsip-bernoulli-a1Kita terapkan persamaan Bernoulli pada titik 1 (permukaan wadah) dan titik 2 (permukaan lubang). Karena diameter kran/lubang pada dasar wadah jauh lebih kecil dari diameter wadah, maka kecepatan zat cair di permukaan wadah dianggap nol (v1 = 0). Permukaan wadah dan permukaan lubang/kran terbuka sehingga tekanannya sama dengan tekanan atmosfir (P1 = P2). Dengan demikian, persamaan Bernoulli untuk kasus ini adalah :

penerapan-prinsip-bernoulli-bJika kita ingin menghitung kecepatan aliran zat cair pada lubang di dasar wadah, maka persamaan ini kita oprek lagi menjadi :

penerapan-prinsip-bernoulli-cBerdasarkan persamaan ini, tampak bahwa laju aliran air pada lubang yang berjarak h dari permukaan wadah sama dengan laju aliran air yang jatuh bebas sejauh h (bandingkan Gerak jatuh Bebas)

Masih tentang Fluida Statis

Prinsip Pascal

Prinsip Pascal Pernahkah dirimu jalan-jalan ke bengkel ? Jangan jauh-jauh ke bengkel, mungkin dirimu pernah melihat mobil mogok di jalan karena ban dalam mobil tersebut kempis alias pecah ?… nah, ketika roda mobil mengalami kerusakan maka om sopir atau kondektur harus menggantinya dengan roda yang lain. Atau kadang mobil harus digiring ke bengkel, soalnya yang nyetir pake dasi. Agar roda mobil yang rusak bisa diganti maka digunakan bantuan dongkrak hidrolis. Tahukah dirimupascal bagaimana prinsip kerja dongkrak hidrolis ? mobil yang begitu berat bisa diangkat dengan mudah. Aneh bin ajaib. Hehe… semuanya karena fisika :) . Selain itu, ketika dirimu menumpang mobil atau angkot, coba amati bagaimana kendaraan bisa direm. Kalau pingin iseng, silahkan bertanya kepada om sopir. Om, kok mobilnya bisa berhenti ya ? prinsip kerja rem bagaimana-kah ? mudah2an dirimu tidak diomelin oleh om sopir.

Ok, kembali ke laptop. Bagaimana prinsip kerja dongkrak/ lift hidrolik yang biasa digunakan untuk mengangkat mobil ? bagaimana pula prinsip kerja rem hidrolis ketika digunakan untuk mengurangi laju mobil ? mudah-mudahan dirimu kebingungan dan tidak mengetahui jawabannya… hehe… ingin tahu mengapa ? selamat belajar bersama om Pascal. Semoga setelah mempelajari pokok bahasan ini, dirimu semakin dekat di hati om Pascal serta om sopir dkk…

Prinsip Pascal

Sebagaimana telah kita pelajari pada pokok bahasan Tekanan pada Fluida, setiap fluida selalu memberikan tekanan pada semua benda yang bersentuhan dengannya. Air yang kita masukan ke dalam gelas akan memberikan tekanan pada dinding gelas. Demikian juga apabila kita mandi dalam kolam renang atau air laut, air kolam atau air laut tersebut juga memberikan tekanan pada seluruh tubuh kita. Nah, tekanan total air pada kedalaman tertentu, misalnya tekanan air laut pada kedalaman 200 meter merupakan jumlah tekanan atmosfir yang menekan permukaan air laut dan “tekanan terukur” pada kedalaman 200 meter. Jadi selain lapisan bagian atas air menekan lapisan air yang ada di bawahnya, terdapat juga atmosfir alias udara yang menekan permukaan air laut tersebut.

Tekanan yang ditimbulkan oleh lapisan fluida yang ada di atas bisa kita katakan “tekanan dalam” karena tekanan itu sendiri berasal dari dalam fluida sedangkan tekanan atmosfir bisa kita katakan “tekanan luar” karena atmosfir terpisah dari fluida. Tekanan atmosfir yang dalam kasus ini merupakan tekanan luar, bekerja pada seluruh permukaan fluida dan tekanan tersebut disalurkan pada seluruh bagian fluida. Karenanya tekanan total fluida pada kedalaman tertentu selain disebabkan oleh tekanan lapisan fluida pada bagian atas, juga dipengaruhi oleh tekanan luar (untuk kasus di atas adalah tekanan atmosfir).

Untuk semakin memahami penjelasan ini, mari kita tinjau zat cair yang berada dalam suatu wadah. Tekanan zat cair pada dasar wadah tentu saja lebih besar dari tekanan zat cair pada bagian di atasnya (ingat kembali pembahasan mengenai Tekanan Pada Fluida). Semakin ke bawah, semakin besar tekanan zat cair tersebut, sebaliknya semakin mendekati permukaan atas wadah, semakin kecil tekanan zat cair. Besarnya tekanan sebanding dengan pgh (p = massa jenis, g = percepatan gravitasi dan h = ketinggian/kedalaman). Pada setiap titik pada kedalaman yang sama, besarnya tekanan sama. Hal ini berlaku untuk semua zat cair dalam wadah apapun dan tidak bergantung pada bentuk wadah tersebut. Apabila kita tambahkan tekanan luar, misalnya dengan menekan permukaan zat cair tersebut, pertambahan tekanan dalam zat cair adalah sama di mana-mana. Jadi apabila diberikan tekanan luar, setiap bagian zat cair mendapat “jatah” tekanan yang sama. Karenanya besar tekanan selalu sama di setiap titik pada kedalaman yang sama. Ini merupakan Prinsip Pascal, dicetuskan dan dinamakan sesuai dengan nama pencetusnya, Om Blaise Pascal (1623-1662). Om Pascal merupakan filsuf dan ilmuwan Perancis, bukan Indonesia. Kapan neh dari Indonesia, dirimu-kah ? :)

Prinsip Pascal menyatakan bahwa tekanan yang diberikan pada cairan dalam suatu tempat tertutup akan diteruskan sama besar ke setiap bagian fluida dan dinding wadah

Secara matematis bisa ditulis sebagai berikut :

P = tekanan, F = Gaya dan A = Luas permukaan. Kata “masuk” mewakili “tekanan yang diberikan”, sedangkan kata “keluar” mewakili “tekanan yang diteruskan”.

Penerapan Prinsip Pascal

Berpedoman pada prinsip Om Pascal ini, manusia telah menghasilkan beberapa alat, baik yang sederhana maupun canggih untuk membantu mempermudah kehidupan. Beberapa di antaranya adalah Dongkrak Hidrolik, Lift Hidrolik, Rem Hidrolik dkk…

Dongkrak alias Lift Hidrolik

Cara kerja dongkrak alias lift hidrolik ditunjukkan pada gambar di bawah.

Silahkan amati gambar yang kusam ini dengan penuh semangat. Jangan dipelototin… hehe… Dongkrak hidrolik terdiri dari sebuah bejana yang memiliki dua permukaan. Pada kedua permukaan bejana terdapat penghisap (piston), di mana luas permukaan piston di sebelah kiri lebih kecil dari luas permukaan piston di sebelah kanan. Luas permukaan piston disesuaikan dengan luas permukaan bejana. Bejana diisi cairan, seperti pelumas (oli dkk).

Apabila piston yang luas permukaannya kecil ditekan ke bawah, maka setiap bagian cairan juga ikut tertekan. Besarnya tekanan yang diberikan oleh piston yang permukaannya kecil (gambar kiri) diteruskan ke seluruh bagian cairan. Akibatnya, cairan menekan piston yang luas permukaannya lebih besar (gambar kanan) hingga piston terdorong ke atas. Luas permukaan piston yang ditekan kecil, sehingga gaya yang diperlukan untuk menekan cairan juga kecil. Tapi karena tekanan (Tekanan = gaya / satuan luas) diteruskan seluruh bagian cairan, maka gaya yang kecil tadi berubah menjadi sangat besar ketika cairan menekan piston di sebelah kanan yang luas permukaannya besar. Jarang sekali orang memberikan gaya masuk pada piston yang luas permukaannya besar, karena tidak menguntungkan. Pada bagian atas piston yang luas permukaannya besar biasanya diletakan benda atau begian benda yang mau diangkat (misalnya mobil dkk)

Dirimu jangan heran jika mobil yang massanya sangat besar dengan mudah diangkat hanya dengan menekan salah satu piston. Ingat bahwa luas permukaan piston sangat kecil sehingga gaya yang kita berikan juga kecil. Walaupun demikian gaya masukan yang kecil tersebut bisa berubah menjadi gaya keluaran yang sangat besar bila luas permukaan keluaran sangat besar. Jika dongkrak hidrolik dirancang untuk mengangkat mobil yang massanya sangat berat maka perancang perlu memperhatikan besar gaya berat mobil tersebut dan besarnya gaya keluaran yang dihasilkan oleh dongkrak. Semakin besar gaya berat mobil yang diangkat maka semakin besar luas permukaan keluaran dari dongkrak hidrolik. Minimal gaya keluaran yang dihasilkan oleh dongkrak hidrolis lebih besar/sama dengan gaya berat benda yang diangkat.


Prinsip Archimedes


Pengantar

Pernahkah dirimu melihat kapal laut ? jika belum pernah melihat kapal laut secara langsung, mudah-mudahan dirimu pernah melihat kapal laut melalui televisi (Tuh ada gambar kapal di samping). Coba bayangkan. Kapal yang massanya sangat besar tidak tenggelam, sedangkan sebuah batu yang ukurannya kecil dan terasa ringan bisa tenggelam. Aneh khan ? Mengapa bisa demikian ?

Jawabannya sangat mudah jika dirimu memahami konsep pengapungan dan prinsip Archimedes. Pada kesempatan ini gurumuda ingin membimbing dirimu untuk memahami apa sesungguhnya prinsip archimedes. Selamat belajar ya… Semoga setelah mempelajari pokok bahasan ini dirimu dengan mudah menjelaskan semua persoalan berkaitan dengan prinsip archimedes, termasuk alasan mengapa kapal yang massanya besar tidak tenggelam.

Gaya Apung

Sebelum membahas prinsip Archimedes lebih jauh, gurumuda ingin mengajak dirimu untuk melakukan percobaan kecil-kecilan berikut ini. Silahkan cari sebuah batu yang ukurannya agak besar, lalu angkat batu tersebut. Apakah batu tersebut terasa berat ? nah, sekarang coba masukan batu ke dalam air (masukan batu ke dalam air laut atau air kolam atau air yang ada dalam sebuah wadah, misalnya ember). Kali ini batu diangkat dalam air. Bagaimana berat batu tersebut ? apakah batu terasa lebih ringan ketika diangkat dalam air atau ketika tidak diangkat dalam air ? agar bisa menjawab pertanyaan gurumuda dengan benar, sebaiknya dirimu melakukan percobaan tersebut terlebih dahulu.

Untuk memperoleh hasil percobaan yang lebih akurat, dirimu bisa melakukan percobaan dengan menimbang batu menggunakan timbangan pegas (seandainya ada timbangan pegas di sekolah-mu). Timbanglah batu di udara terlebih dahulu. Catat berat batu tersebut. Selanjutnya, masukan batu ke dalam sebuah wadah yang berisi air, lalu timbang lagi batu tersebut. Bandingkan manakah berat batu yang lebih besar, ketika batu ditimbang di dalam air atau ketika batu ditimbang di udara ?

Ketika dirimu menimbang batu di dalam air, berat batu yang terukur pada timbangan pegas menjadi lebih kecil dibandingkan dengan ketika dirimu menimbang batu di udara (tidak di dalam air). Massa batu yang terukur pada timbangan lebih kecil karena ada gaya apung yang menekan batu ke atas. Efek yang sama akan dirasakan ketika kita mengangkat benda apapun dalam air. Batu atau benda apapun akan terasa lebih ringan jika diangkat dalam air. Hal ini bukan berarti bahwa sebagian batu atau benda yang diangkat hilang sehingga berat batu menjadi lebih kecil, tetapi karena adanya gaya apung. Arah gaya apung ke atas, alias searah dengan gaya angkat yang kita berikan pada batu tersebut sehingga batu atau benda apapun yang diangkat di dalam air terasa lebih ringan. Sampai di sini, dirimu sudah paham-kah ?

Keterangan gambar :

Fpegas = gaya pegas, w = gaya berat batu, F1 = gaya yang diberikan fluida pada bagian atas batu, F2 = gaya yang diberikan fluida pada bagian bawah batu, Fapung = gaya apung.

Fapung merupakan gaya total yang diberikan fluida pada batu (Fapung = F2-F1). Arah gaya apung (Fapung) ke atas, karena gaya yang diberikan fluida pada bagian bawah batu (F2) lebih besar daripada gaya yang diberikan fluida pada bagian atas batu (F1). Hal ini dikarenakan tekanan fluida pada bagian bawah lebih besar daripada tekanan fluida pada bagian atas batu.

Prinsip Archimedes

Dalam kehidupan sehari-hari, kita akan menemukan bahwa benda yang dimasukan ke dalam fluida seperti air misalnya, memiliki berat yang lebih kecil daripada ketika benda tidak berada di dalam fluida tersebut. Dirimu mungkin sulit mengangkat sebuah batu dari atas permukaan tanah tetapi batu yang sama dengan mudah diangkat dari dasar kolam. Hal ini disebabkan karena adanya gaya apung sebagaimana telah dijelaskan sebelumnya. Gaya apung terjadi karena adanya perbedaan tekanan fluida pada kedalaman yang berbeda. Seperti yang telah gurumuda jelaskan pada pokok bahasan Tekanan pada Fluida, tekanan fluida bertambah terhadap kedalaman. Semakin dalam fluida (zat cair), semakin besar tekanan fluida tersebut. Ketika sebuah benda dimasukkan ke dalam fluida, maka akan terdapat perbedaan tekanan antara fluida pada bagian atas benda dan fluida pada bagian bawah benda. Fluida yang terletak pada bagian bawah benda memiliki tekanan yang lebih besar daripada fluida yang berada di bagian atas benda. (perhatikan gambar di bawah).

Pada gambar di atas, tampak sebuah benda melayang di dalam air. Fluida yang berada dibagian bawah benda memiliki tekanan yang lebih besar daripada fluida yang terletak pada bagian atas benda. Hal ini disebabkan karena fluida yang berada di bawah benda memiliki kedalaman yang lebih besar daripada fluida yang berada di atas benda (h2 > h1).

Besarnya tekanan fluida pada kedalamana h2 adalah :

Besarnya tekanan fluida pada kedalamana h1 adalah :

F2 = gaya yang diberikan oleh fluida pada bagian bawah benda, F1 = gaya yang diberikan oleh fluida pada bagian atas benda, A = luas permukaan benda

Selisih antara F2 dan F1 merupakan gaya total yang diberikan oleh fluida pada benda, yang kita kenal dengan istilah gaya apung. Besarnya gaya apung adalah :

Keterangan :

Karena

(ingat kembali persamaan massa jenis)

Maka persamaan yang menyatakan besarnya gaya apung (Fapung) di atas bisa kita tulis menjadi :

mFg = wF = berat fluida yang memiliki volume yang sama dengan volume benda yang tercelup. Berdasarkan persamaan di atas, kita bisa mengatakan bahwa gaya apung pada benda sama dengan berat fluida yang dipindahkan. Ingat bahwa yang dimaksudkan dengan fluida yang dipindahkan di sini adalah volume fluida yang sama dengan volume benda yang tercelup dalam fluida. Pada gambar di atas, gurumuda menggunakan ilustrasi di mana semua bagian benda tercelup dalam fluida (air). Jika dinyatakan dalam gambar maka akan tampak sebagai berikut :

Apabila benda yang dimasukkan ke dalam fluida, terapung, di mana bagian benda yang tercelup hanya sebagian maka volume fluida yang dipindahkan = volume bagian benda yang tercelup dalam fluida tersebut. Tidak peduli apapun benda dan bagaimana bentuk benda tersebut, semuanya akan mengalami hal yang sama. Ini adalah buah karya eyang butut Archimedes (287-212 SM) yang saat ini diwariskan kepada kita dan lebih dikenal dengan julukan “Prinsip Archimedes”. Prinsip Archimedes menyatakan bahwa :

Ketika sebuah benda tercelup seluruhnya atau sebagian di dalam zat cair, zat cair akan memberikan gaya ke atas (gaya apung) pada benda, di mana besarnya gaya ke atas (gaya apung) sama dengan berat zat cair yang dipindahkan.

Dirimu bisa membuktikan prinsip Archimedes dengan melakukan percobaan kecil-kecilan berikut. Masukan air ke dalam sebuah wadah (ember dkk). Usahakan sampai meluap sehingga ember tersebut benar-benar penuh terisi air. Setelah itu, silahkan masukan sebuah benda ke dalam air. Setelah benda dimasukan ke dalam air, maka sebagian air akan tumpah. Volume air yang tumpah = volume benda yang tercelup dalam air tersebut. Jika seluruh bagian benda tercelup dalam air, maka volume air yang tumpah = volume benda tersebut. Tapi jika benda hanya tercelup sebagian, maka volume air yang tumpah = volume dari bagian benda yang tercelup dalam air Besarnya gaya apung yang diberikan oleh air pada benda = berat air yang tumpah (berat air yang tumpah = w = mairg = massa jenis air x volume air yang tumpah x percepatan gravitasi). Volume air yang tumpah = volume benda yang tercelup dalam air

Kisah Eyang Archimedes

Konon katanya, eyang butut Archimedes yang hidup antara tahun 287-212 SM ditugaskan oleh Raja Hieron II untuk menyelidiki apakah mahkota yang dibuat untuk Sang Raja terbuat dari emas murni atau tidak. Untuk mengetahui apakah mahkota tersebut terbuat dari emas murni atau mahkota tersebut mengandung logam lain, eyang butut Archimedes pada mulanya kebingungan. Persoalannya, bentuk mahkota itu tidak beraturan dan tidak mungkin dihancurkan dahulu agar bisa ditentukan apakah mahkota terbuat dari emas murni atau tidak. Ide brilian muncul ketika ia sedang mandi dan mungkin karena saking senangnya, eyang butut Archimedes ini langsung berlari dalam keadaan bugil sambil berteriak “eureka” yang artinya “saya telah menemukannya”. Waduh, saking senangnya lupa pake handuk… hehe… ide brilian untuk menentukan apakah mahkota raja terbuat dari emas murni atau tidak adalah dengan terlebih dahulu menentukan Berat Jenis mahkota tersebut lalu membandingkannya dengan berat jenis emas. Jika mahkota terbuat dari emas murni, maka berat jenis mahkota = berat jenis emas.

Berat jenis suatu benda merupakan perbandingan antara berat benda tersebut di udara dengan berat air yang memiliki volume yang sama dengan volume benda. Secara matematis ditulis :

Nah, sekarang bagaimana menentukan berat air yang memiliki volume yang sama dengan volume benda ?

Menurut eyang butut Archimedes, berat air yang memiliki volume yang sama dengan volume benda = besarnya gaya apung ketika benda tenggelam (seluruh bagan benda tercelup dalam air). Hal ini sama saja dengan berat benda yang hilang ketika ditimbang dalam air. Dengan demikian :

Untuk menentukan berat jenis mahkota, maka terlebih dahulu mahkota ditimbang di udara (BeratMahkotaDiudara). Selanjutnya mahkota dimasukan ke dalam air lalu ditimbang lagi untuk memperoleh BeratMahkotaYangHilang. Jadi :

Setelah berat jenis mahkota diperoleh, maka selanjutnya dibandingkan dengan berat jenis emas. Berat jenis emas = 19,3. Jika berat jenis mahkota = berat jenis emas, maka mahkota tersebut terbuat dari emas murni. Tapi jika mahkota tidak terbuat dari emas murni, maka berat jenis mahkota tidak sama dengan berat jenis emas. Begitu….

Mengapa Kapal Tidak Tenggelam ?

Pada pokok bahasan Massa Jenis dan Berat Jenis, telah dijelaskan konsep terapung dan tenggelam dari sudut pandang ilmu fisika. Apabila kerapatan alias massa jenis suatu benda lebih kecil dari massa jenis air, maka benda akan terapung. Sebaliknya jika kerapatan suatu benda lebih besar dari kerapatan air maka benda tersebut akan tenggelam.

Nah, kebanyakan kapal terbuat dari besi dan baja. Massa jenis besi dan baja = 7,8 x 103 kg/m3 sedangkan masa jenis air = 1,00 x 103 kg/m3. Tampak bahwa kerapatan besi dan baja lebih besar dari kerapatan air. Dalam hal ini berat jenis besi dan baja = 7,8. seharusnya kapal yang terbuat dari besi dan baja tenggelam dunk ;) lalu mengapa kapal tidak tenggelam ?

Ayo dijawab melalui kolom komentar… nanti kita bahas bareng-bareng :)

Tegangan Permukaan

Pernahkah dirimu bermain gelembung sabun ? aneh ya, gelembung sabun kok bisa berbentuk bulat.. lucu & asyik… bisa ditiup lagi. Terus setelah terbang, gelembung sabun pecah. Wah, seru ya permainan masa kecil. Btw, mengapa ya gelembung sabun bisa berbentuk bulat ? Ngomong soal bulat, ada juga yang mirip gelembung sabun. Yang ini banyak dijumpai di pagi hari… coba dirimu bangun di pagi hari, terus perhatikan dedaunan yang ada di sekitar rumah. Amati tetesan embun yang menempel di dedaunan. Aneh khan, tetes embun juga kadang bentuknya bulat. Mengapa ya bisa seperti itu ? atau kalau dirimu malas bangun pagi, coba perhatikan tetesan air yang keluar dari kran air. Krannya ditutup dahulu. Setelah itu, putar kran perlahan-lahan hingga yang keluar dari mulut kran adalah tetes-tetas air… kalau diamati, air yang menetes dari mulut kran mula-mula menggumpal (bulat). Lama kelamaan bulatannya semakin besar lalu pecah dan jatuh ke lantai. Apa yang membuat air menjadi seperti itu ? semuanya bisa dijelaskantegangan permukaan-11 dengan ilmu fisika… fisika lagi, fisika lagi… mumet dah. Hehe… :) ingin tahu mengapa demikian ? mari kita bertarung dengan Tegangan Permukaan. Setelah mempelajari pokok bahasan Tegangan Permukaan, dirimu dengan mudah menjelaskan fenomena tersebut…

Konsep Tegangan Permukaan

Sebelum melangkah lebih jauh :) , alangkah baiknya jika dirimu melakukan percobaan kecil-kecilan mengenai tegangan permukaan. Masukan air ke dalam sebuah wadah (misalnya gelas). sediakan juga sebuah penjepit kertas (klip). Nah, sekarang letakan klip secara perlahan-lahan di atas air. Jika dilakukan secara baik dan benar, maka klip tersebut akan mengapung di atas permukaan air. Biasanya klip terbuat dari logam, sehingga kerapatannya lebih besar dari kerapatan air. Karena massa jenis klip lebih besar dari massa jenis air, maka seharusnya klip itu tenggelam. Tapi kenyataannya klip terapung. Fenomena ini merupakan salah satu contoh dari adanya Tegangan Permukaan.

Untuk menjelaskan fenomena klip yang terapung di atas air, terlebih dahulu harus diketahui apa sesungguhnya tegangan permukaan itu. Tegangan permukaan terjadi karena permukaan zat cair cenderung untuk menegang sehingga permukaannya tampak seperti selaput tipis. Hal ini dipengaruhi oleh adanya gaya kohesi antara molekul air. Agar semakin memahami penjelasan ini, perhatikan ilustrasi berikut. Kita tinjau cairan yang berada di dalam sebuah wadah.

Molekul cairan biasanya saling tarik menarik. Di bagian dalam cairan, setiap molekul cairan dikelilingi oleh molekul-molekul lain di setiap sisinya; tetapi di permukaan cairan, hanya ada molekul-molekul cairan di samping dan di bawah. Di bagian atas tidak ada molekul cairan lainnya. Karena molekul cairan saling tarik menarik satu dengan lainnya, maka terdapat gaya total yang besarnya nol pada molekul yang berada di bagian dalam cairan. Sebaliknya, molekul cairan yang terletak dipermukaan ditarik oleh molekul cairan yang berada di samping dan bawahnya. Akibatnya, pada permukaan cairan terdapat gaya total yang berarah ke bawah. Karena adanya gaya total yang arahnya ke bawah, maka cairan yang terletak di permukaan cenderung memperkecil luas permukaannya, dengan menyusut sekuat mungkin. Hal ini yang menyebabkan lapisan cairan pada permukaan seolah-olah tertutup oleh selaput elastis yang tipis. Fenomena ini kita kenal dengan istilah Tegangan Permukaan.

Lalu mengapa klip tidak tenggelam ?

Ketika klip diletakan secara hati-hati ke atas permukaan air, molekul-molekul air yang terletak di permukaan agak ditekan oleh gaya berat klip tersebut, sehingga molekul-molekul air yang terletak di bawah memberikan gaya pemulih ke atas untuk menopang klip tersebut (ingat kembali elastisitas). Dalam kenyataannya, bukan hanya klip alias penjepit kertas, tetapi juga bisa benda lain seperti jarum. Apabila kita meletakan jarum secara hati-hati di atas permukaan air, maka jarum akan terapung. Adanya tegangan permukaan cairan juga menjadi alasan mengapa serangga bisa mengapung di atas air.

Persamaan Tegangan Permukaan

Pada pembahasan sebelumnya, kita telah mempelajari konsep tegangan permukaan secara kualitatif (tidak ada persamaan matematis). Kali ini kita tinjau tegangan permukaan secara kuantitatif. Untuk membantu kita menurunkan persamaan tegangan permukaan, kita tinjau sebuah kawat yang dibengkokkan membentuk huruf U. Sebuah kawat lain yang berbentuk lurus dikaitkan pada kedua kaki kawat U, di mana kawat lurus tersebut bisa digerakkan (lihat gambar di bawah).

Jika kawat ini dimasukan ke dalam larutan sabun, maka setelah dikeluarkan akan terbentuk lapisan air sabun pada permukaan kawat tersebut. Mirip seperti ketika dirimu bermain gelembung sabun. Karena kawat lurus bisa digerakkan dan massanya tidak terlalu besar, maka lapisan air sabun akan memberikan gaya tegangan permukaan pada kawat lurus sehingga kawat lurus bergerak ke atas (perhatikan arah panah). Untuk mempertahankan kawat lurus tidak bergerak (kawat berada dalam kesetimbangan), maka diperlukan gaya total yang arahnya ke bawah, di mana besarnya gaya total adalah F = w + T. Dalam kesetimbangan, F = gaya tegangan permukaan yang dikerjakan oleh lapisan air sabun pada kawat lurus.

Misalkan panjang kawat lurus adalah l. Karena lapisan air sabun yang menyentuh kawat lurus memiliki dua permukaan, maka gaya tegangan permukaan yang ditimbulkan oleh lapisan air sabun bekerja sepanjang 2l. Tegangan permukaan pada lapisan sabun merupakan perbandingan antara Gaya Tegangan Permukaan (F) dengan panjang permukaan di mana gaya bekerja (d). Untuk kasus ini, panjang permukaan adalah 2l. Secara matematis, ditulis :

Karena tegangan permukaan merupakan perbandingan antara Gaya tegangan permukaan dengan Satuan panjang, maka satuan tegangan permukaan adalah Newton per meter (N/m) atau dyne per centimeter (dyn/cm).

1 dyn/cm = 10-3 N/m = 1 mN/m

Berikut ini beberapa nilai Tegangan Permukaan yang diperoleh berdasarkan percobaan.

Zat cair yang

bersentuhan dengan udara

Suhu (oC)

Tegangan Permukaan

(mN/m = dyn/cm)

Air

0

75,60

Air

20

72,80

Air

25

72,20

Air

60

66,20

Air

80

62,60

Air

100

58,90

Air sabun

20

25,00

Minyak Zaitun

20

32,00

Air Raksa

20

465,00

Oksigen

-193

15,70

Neon

-247

5,15

Helium

-269

0,12

Aseton

20

23,70

Etanol

20

22,30

Gliserin

20

63,10

Benzena

20

28,90

Berdasarkan data Tegangan Permukaan, tampak bahwa suhu mempengaruhi nilai tegangan permukaan fluida. Umumnya ketika terjadi kenaikan suhu, nilai tegangan permukaan mengalami penurunan (Bandingkan nilai tegangan permukaan air pada setiap suhu. Lihat tabel). Hal ini disebabkan karena ketika suhu meningkat, molekul cairan bergerak semakin cepat sehingga pengaruh interaksi antar molekul cairan berkurang. Akibatnya nilai tegangan permukaan juga mengalami penurunan.

Aplikasi Konsep Tegangan Permukaan dalam kehidupan sehari-hari

Pernahkah dirimu bertanya, mengapa kita harus mencuci pakaian dengan sabun ? Persoalannya, agar pakaian yang kita cuci benar-benar bersih maka air harus melewati celah yang sangat sempit pada serat pakaian. Untuk itu diperlukan penambahan luas permukaan air. Nah, hal ini sangat sukar dilakukan karena adanya tegangan permukaan. Mau tidak mau nilai tegangan permukaan air harus diturunkan dahulu. Kita bisa menurunkan tegangan permukaan dengan cara menggunakan air panas. Makin tinggi suhu air, maka baik karena semakin tinggi suhu air, semakin kecil tegangan permukaan (lihat tabel). Ini alternatif pertama dan merupakan cara yang jarang digunakan. Kecuali mereka yang suka bermain dengan air panas :)

Alternatif lainnya adalah menggunakan sabun. Pada suhu 20 oC, nilai Tegangan Permukaan air sabun adalah 25,00 mN/m. Coba bandingkan antara air sabun dan air panas, manakah nilai tegangan permukaan paling kecil ? Pada 100 oC, nilai tegangan permukaan air panas = 58,90. Pada suhu 20 oC, nilai tegangan permukaan air sabun adalah 25,00 mN/m. Lebih menguntungkan pakai sabun… airnya juga tidak panas. Jangan heran kalau sabun sangat laris di pasar. Semuanya karena fisika oh fisika ;) engkau yang kubenci, tapi telah membantuku membersihkan pakaian yang kotor. Bukan cuma pakaian, tapi tubuh kita juga. Ini cuma beberapa contoh…

(catatan : masih ada faktor lain yang mempengaruhi pakaian atau tubuh kita bisa dibersihkan dengan sabun. Jadi yang dijelaskan di atas hanya salah satu faktor yang mempengaruhi. Mungkin akan anda pelajari pada mata pelajaran kimia)

Mengapa gelembung sabun atau air berbentuk bulat ?

Sebelum mengakhiri pokok bahasan ini, alangkah baiknya jika pahami mengapa gelembung sabun atau tetes air berbentuk bulat. Gelembung sabun atau tetes air berbentuk bulat karena dipengaruhi oleh adanya tegangan permukaan. Terlebih dahulu kita bahas gelembung sabun. Gelembung sabun memiliki dua selaput tipis pada permukaannya dan di antara kedua selaput tersebut terdapat lapisan air tipis. Adanya tegangan permukaan menyebabkan selaput berkontraksi dan cenderung memperkecil luas permukaannya. Ketika selaput air sabun berkontraksi dan berusaha memperkecil luas permukaannya, timbul perbedaan tekanaan udara di bagian luar selaput (tekanan atmosfir) dan tekanan udara di bagian dalam selaput. Tekanan udara yang berada di luar selaput (tekanan atmosfir) turut mendorong selaput air sabun ketika ia melakukan kontraksi, karena tekanan udara di bagian dalam selaput lebih kecil. Setelah selaput berkontraksi, maka udara di dalamnya (udara yang terperangkap di antara dua selaput) ikut tertekan, sehingga menaikan tekanan udara di dalam selaput sampai tidak terjadi kontraksi lagi. Dengan kata lain, ketika tidak terjadi kontraksi lagi, besarnya tekanan udara di antara selaput sama dengan tekanan atmosfir + gaya tegangan permukaan yang mengerutkan selaput.

Lalu bagaimana dengan tetes embun atau tetes air yang keluar dari kran ?

Pada dasarnya sama saja karena penyebab utamanya adalah tegangan permukaan. Kalau gelembung air sabun memiliki dua selaput tipis pada dua permukaannya, maka tetes air hanya memiliki satu selaput tipis, yakni pada bagian luar tetes air. Bagian dalamnya penuh dengan air. Akibat adanya gaya kohesi, maka timbul tegangan permukaan. Bagian luar tetes air ditarik ke dalam. Akibatnya, air berkontraksi dan cenderung memperkecil luas permukaannya. Tekanan atmosfir yang berada di luar turut membantu menekan tetes air. Kontraksi akan terhenti ketika tekanan pada bagian dalam air sama dengan tekanan atmosfir + gaya tegangan permukaan yang mengerutkan selaput air.

Kapilaritas

Pengantar

Pernah melihat lilin ? mudah-mudahan pernah menggunakannya. Salah satu fenomena yang menarik dapat kita saksikan ketika lilin sedang bernyala. Bagian bawah dari sumbu lilin yang terbakar biasanya selalu basah oleh leleh lilin (di bagian sumbu). Adanya leleh lilin pada sumbu membuat lilin bisa bernyala dalam waktu yang lama. Btw, apa yang menyebabkan leleh lilin bisa bergerak ke atas menuju sumbu lilin yang terbakar ? fenomena yang sama bisa kita amati pada lampu minyak. Lampu minyak merupakan salah satu sumber penerangan ketika belum ada lampu listrik. Mungkin saat ini masih digunakan. Lampu minyak terdiri dari wadah yang berisi bahan bakar (biasanya minyak tanah) dan sumbu. Sebagian sumbu dicelupkan dalam wadah yang berisi minyak tanah, sedangkan sebagian lagi dibungkus dalam pipa kecil. Pada ujung atas pipa tersebut, disisakan sebagian sumbu. Jika kita ingin menggunakan lampu minyak, maka sumbu yang terletak di ujung atas pipa kecil tersebut harus dibakar. Sumbu tersebut bisa menyala dalam waktu yang lama karena minyak tanah yang berada dalam wadah merembes ke atas, hingga mencapai ujung sumbu yang terbakar. Aneh ya, kok minyak tanah bisa merembes ke atas ?

Banyak hal menarik dalam kehidupan kita yang mirip dengan fenomena yang terjadi pada lilin dan lampu minyak. Seolah-olah cairan tersebut mempunyai kaki sehingga bisa bergerak ke atas. Apakah dirimu bisa menjelaskannya secara ilmiah ?

Salah satu konsep fisika yang bisa menjelaskan fenomena yang terjadi pada lilin, lampu minyak serta banyak fenomena terkait lainnya adalah Kapilaritas. Terus kapilaritas itu apa ? untuk memahami konsep Kapilaritas, pahami penjelasan berikut ini.

Gaya Kohesi dan Adhesi

Dirimu mungkin pernah mendengar istilah Kohesi dan Adhesi. Gaya Kohesi merupakan gaya tarik menarik antara molekul dalam zat yang sejenis, sedangkan gaya tarik menarik antara molekul zat yang tidak sejenis dinamakan Gaya Adhesi. Misalnya kita tuangkan air dalam sebuah gelas. Kohesi terjadi ketika molekul air saling tarik menarik, sedangkan adhesi terjadi ketika molekul air dan molekul gelas saling tarik menarik.

Sudut Kontak

Sebelum mempelajari konsep Kapilaritas, terlebih dahulu kita pahami bagaimana pengaruh gaya adhesi dan gaya kohesi bagi Kapilaritas. Misalnya kita tinjau cairan yang berada dalam sebuah gelas (lihat gambar di bawah). Ketika gaya kohesi molekul cairan lebih kuat daripada gaya adhesi (gaya tarik menarik antara molekul cairan dengan molekul gelas) maka permukaan cairan akan membentuk lengkungan ke atas. Contoh untuk kasus ini adalah ketika air berada dalam gelas. Biasanya dikatakan bahwa air membasahi permukaan gelas. Sebaliknya apabila gaya adhesi lebih kuat maka permukaan cairan akan melengkung ke bawah. Contohnya ketika air raksa berada di dalam gelas.

Sudut yang dibentuk oleh lengkungan itu dinamakan sudut kontak (teta). Ketika gaya kohesi cairan lebih besar daripada gaya adhesi, maka sudut kontak yang terbentuk umumnya lebih kecil dari 90o (gambar a). Sebaliknya, apabila gaya adhesi lebih besar daripada gaya kohesi cairan, maka sudut kontak yang terbentuk lebih besar dari 90o (gambar b). Gaya adhesi dan gaya kohesi secara teoritis sulit dihitung, tetapi sudut kontak dapat diukur. Apa hubungannya dengan kapilaritas ?

Konsep Kapilaritas

Seperti yang telah dijelaskan pada pokok bahasan Tegangan Permukaan, pada setiap permukaan cairan terdapat tegangan permukaan.

Apabila gaya kohesi cairan lebih besar dari gaya adhesi, maka permukaan cairan akan melengkung ke atas. Ketika kita memasukan tabung atau pipa tipis (pipa yang diameternya lebih kecil dari wadah), maka akan terbentuk bagian cairan yang lebih tinggi (Lihat digambar di bawah). Dengan kata lain, cairan yang ada dalam wadah naik melalui kolom pipa tersebut. Hal ini disebabkan karena gaya tegangan permukaan total sepanjang dinding tabung bekerja ke atas. Ketinggian maksimum yang dapat dicapai cairan adalah ketika gaya tegangan permukaan sama atau setara dengan berat cairan yang berada dalam pipa. Jadi, cairan hanya mampu naik hingga ketinggian di mana gaya tegangan permukaan seimbang dengan berat cairan yang ada dalam pipa.


Sebaliknya, jika gaya adhesi lebih besar daripada gaya kohesi cairan, maka permukaan cairan akan melengkung ke bawah. Ketika kita memasukan tabung atau pipa tipis (pipa yang diameternya lebih kecil dari wadah), maka akan terbentuk bagian cairan yang lebih rendah (lihat gambar di bawah).

Efek ini dikenal dengan julukan gerakan kapiler alias kapilaritas dan pipa tipis tersebut dinamakan pipa kapiler. Perlu diketahui bahwa pembuluh darah kita yang terkecil juga bisa disebut pipa kapiler, karena peredaran darah pada pembuluh darah yang kecil juga terjadi akibat adanya efek kapilaritas. Demikian juga fenomena naiknya leleh lilin atau minyak tanah melalui sumbu. Selain itu, kapilaritas juga diyakini berperan penting bagi perjalanan air dan zat bergizi dari akar ke daun melalui pembuluh xylem yang ukurannya sangat kecil. Bila tidak ada kapilaritas, permukaan tanah akan langsung mengering setelah turun hujan atau disirami air. Efek penting lainnya dari kapilartas adalah tertahannya air di celah-celah antara partikel tanah. Lumayan, bisa membantu para petani di kebun.

Persamaan Kapilaritas

Pada penjelasan sebelumnya, dikatakan bahwa ketinggian maksimum yang dapat dicapai cairan ketika cairan naik melalui pipa kapiler terjadi ketika gaya tegangan permukaan seimbang dengan berat cairan yang ada dalam pipa kapiler. Nah, bagaimana kita bisa menentukan ketinggian air yang naik melalui kolom pipa kapiler ? mau tidak mau, kita harus menggunakan persamaan :) rumus lagi, rumus lagi… Untuk membantu kita menurunkan persamaan, perhatikan gambar di bawah.

Tampak bahwa cairan naik pada kolom pipa kapiler yang memiliki jari-jari r hingga ketinggian h. Gaya yang berperan dalam menahan cairan pada ketinggian h adalah komponen gaya tegangan permukaan pada arah vertikal : F cos teta (bandingkan dengan gambar di bawah).

Bagian atas pipa kapiler terbuka sehingga terdapat tekanan atmosfir pada permukaan cairan. Panjang permukaan sentuh antara cairan dengan pipa adalah 2 phi r (keliling lingkaran). Dengan demikian, besarnya gaya tegangan permukaan komponen vertikal yang bekerja sepanjang permukaan kontak adalah :

Keterangan :

Apabila permukaan cairan yang melengkung ke atas diabaikan, maka volume cairan dalam pipa adalah :

Apabila komponen vertikal dari Gaya Tegangan Permukaan seimbang dengan berat kolom cairan dalam pipa kapiler, maka cairan tidak dapat naik lagi. Dengan kata lain, cairan akan mencapai ketinggian maksimum, apabila komponen vertikal dari gaya tegangan permukaan seimbang dengan berat cairan setinggi h. Komponen vertikal dari Gaya tegangan permukaan adalah :

Ketika cairan mencapai ketinggian maksimum (h), Komponen vertikal dari gaya tegangan permukaan harus sama dengan berat cairan yang ada dalam pipa kapiler. Secara matematis, ditulis :

Ini adalah persamaan yang kita cari. Jika dirimu ingin menentukan ketinggian kolom cairan, silahkan menggunakan persamaan ini :) tidak perlu malu-malu… sekian ya.

Viskositas

Pengantar

Pernah lihat minyak pelumas-kah ? oli motor… yang cowok pasti tahu, soalnya tiap hari kebut2an di jalan. He2…. Coba bandingkan oli dengan air. Manakah yang lebih kental ? Ah, gurumuda ini. Cuma gitu kok nanya… oli lebih kental dunk. Ich, pinter… sekarang giliran cewe. Kalau yang cewe khan dekat dengan ibu, jadi pasti tahu minyak goreng. Wah, kalau anak mami, pasti cuma bisa rebus mi sedap… piss…. Mana yang lebih cair, minyak goreng lebih kental atau es teh ? es teh-lah… anak sd juga bisa jawab. Ich, pinter2 ya, pelajar jaman sekarang… Hehe… btw, pada kesempatan ini kita akan mempelajari kekentalan suatu fluida, baik zat gas maupun zat cair. Istilah kerennya viskositas. Viskositas = ukuran kekentalan fluida. Met belajar ya… semoga tiba dengan selamat di tempat tujuan ;)

Konsep Viskositas

Fluida, baik zat cair maupun zat gas yang jenisnya berbeda memiliki tingkat kekentalan yang berbeda. Pernah lihat air khan ? air apa dulu gurumuda ;) air sumur, air leding, air minum, air tawar, air putih… he2… ini mah jenisnya sama, cuma nama panggilannya berbeda… maksud gurumuda adalah zat cair yang jenisnya berbeda… misalnya sirup dan air. Sirup biasanya lebih kental dari air. Atau air susu, minyak goreng, oli, darah, dkk…. Tambahin sendiri ;) Tingkat kekentalan setiap zat cair tersebut berbeda-beda. Btw, pada umumnya, zat cair tuh lebih kental dari zat gas.

Viskositas alias kekentalan sebenarnya merupakan gaya gesekan antara molekul-molekul yang menyusun suatu fluida (fluida tuh zat yang dapat mengalir, dalam hal ini zat cair dan zat gas… jangan pake lupa ya). Istilah gaulnya, viskositas tuh gaya gesekan internal fluida (internal = dalam). Jadi molekul-molekul yang membentuk suatu fluida saling gesek-menggesek ketika fluida tersebut mengalir. Pada zat cair, viskositas disebabkan karena adanya gaya kohesi (gaya tarik menarik antara molekul sejenis). Sedangkan dalam zat gas, viskositas disebabkan oleh tumbukan antara molekul.

Fluida yang lebih cair biasanya lebih mudah mengalir, contohnya air. Sebaliknya, fluida yang lebih kental lebih sulit mengalir, contohnya minyak goreng, oli, madu dkk. Dirimu bisa membuktikan dengan menuangkan air dan minyak goreng di atas lantai yang permukaannya miring. Pasti air ngalir lebih cepat daripada minyak goreng atau oli. Tingkat kekentalan suatu fluida juga bergantung pada suhu. Semakin tinggi suhu zat cair, semakin kurang kental zat cair tersebut. Misalnya ketika ibu menggoreng paha ikan di dapur, minyak goreng yang awalnya kental menjadi lebih cair ketika dipanaskan. Sebaliknya, semakin tinggi suhu suatu zat gas, semakin kental zat gas tersebut.

Oya, perlu diketahui bahwa viskositas alias kekentalan cuma ada pada fluida riil (rill = nyata). Fluida riil/nyata tuh fluida yang kita temui dalam kehidupan sehari-hari, seperti air, sirup, oli, asap knalpot, dkk…. Fluida riil berbeda dengan fluida ideal. Fluida ideal sebenarnya tidak ada dalam kehidupan sehari-hari. Fluida ideal hanya model yang digunakan untuk membantu kita dalam menganalisis aliran fluida (fluida ideal ini yang kita pakai dalam pokok bahasan Fluida Dinamis). Mirip seperti kita menganggap benda sebagai benda tegar, padahal dalam kehidupan sehari-hari sebenarnya tidak ada benda yang benar-benar tegar/kaku. Tujuannya sama, biar analisis kita menjadi lebih sederhana alias tidak beribet. Ok, kembali ke laptop….

Koofisien Viskositas

Viskositas fluida dilambangkan dengan simbol (baca : eta). Ini hurufnya orang yunani. Hurufnya orang yunani aneh2, kakinya sebelah panjang, sebelahnya pendek… :) = koofisien viskositas. Jadi tingkat kekentalan suatu fluida dinyatakan oleh koofisien viskositas fluida tersebut. Secara matematis, koofisien viskositas bisa dinyatakan dengan persamaan. Sekarang, siapkan amunisi secukupnya… kita akan menurunkan persamaan si koofisien viskositas. Untuk membantu menurunkan persamaan, kita meninjau gerakan suatu lapisan tipis fluida yang ditempatkan di antara dua pelat sejajar. Ok, tancap gas… Tataplah gambar di bawah dengan penuh kelembutan

viskositas-a1

Lapisan fluida tipis ditempatkan di antara 2 pelat. Gurumuda sengaja memberi warna biru pada lapisan fluida yang berada di bagian tengah, biar dirimu mudah paham dengan penjelasan gurumuda. Masih ingat si kohesi dan adhesi tidak ? kohesi tuh gaya tarik menarik antara molekul sejenis, sedangkan si adhesi tuh gaya tarik menarik antara molekul yang tak sejenis. Gaya adhesi bekerja antara pelat dan lapisan fluida yang nempel dengan pelat (molekul fluida dan molekul pelat saling tarik menarik). Sedangkan gaya kohesi bekerja di antara selaput fluida (molekul fluida saling tarik menarik).

Mula-mula pelat dan lapisan fluida diam (gambar 1). Setelah itu pelat yang ada di sebelah atas ditarik ke kanan (gambar 2). Pelat yang ada di sebelah bawah tidak ditarik (pelat sebelah bawah diam). Besar gaya tarik diatur sedemikian rupa sehingga pelat yang ada di sebelah atas bergeser ke kanan dengan laju tetap (v tetap). Karena ada gaya adhesi yang bekerja antara pinggir pelat dengan bagian fluida yang nempel dengan pelat, maka fluida yang ada di sebelah bawah pelat juga ikut2an bergeser ke kanan. Karena ada gaya kohesi antara molekul fluida, maka si fluida yang bergeser ke kanan tadi narik temannya yang ada di sebelah bawah. Temannya yang ada di sebelah bawah juga ikut2an bergeser ke kanan. Temannya tadi narik lagi temannya yang ada di sebelah bawah. begitu seterusnya…

Ingat ya, pelat yang ada di sebelah bawah diam. Karena si pelat diam, maka bagian fluida yang nempel dengan pelat tersebut juga ikut2an diam (ada gaya adhesi.. jangan pake lupa). Si fluida yang nempel dengan pelat nahan temannya yang ada di sebelah atas. Temannya yang ada di sebelah atas juga nahan temannya yang ada di sebelah atas… demikian seterusnya.

Karena bagian fluida yang berada di sebelah atas menarik temannya yang berada di sebelah bawah untuk bergeser ke kanan, sebaliknya bagian fluida yang ada di sebelah bawah menahan temannya yang ada di sebelah atas, maka laju fluida tersebut bervariasi. Bagian fluida yang berada di sebelah atas bergerak dengan laju (v) yang lebih besar, temannya yang berada di sebelah bawah bergerak dengan v yang lebih kecil, demikian seterusnya. Jadi makin ke bawah v makin kecil. Dengan kata lain, kecepatan lapisan fluida mengalami perubahan secara teratur dari atas ke bawah sejauh l (lihat gambar 2)

Perubahan kecepatan lapisan fluida (v) dibagi jarak terjadinya perubahan (l) = v / l. v / l dikenal dengan julukan gradien kecepatan. Nah, pelat yang berada di sebelah atas bisa bergerak karena ada gaya tarik (F). Untuk fluida tertentu, besarnya Gaya tarik yang dibutuhkan berbanding lurus dengan luas fluida yang nempel dengan pelat (A), laju fluida (v) dan berbanding terbalik dengan jarak l. Secara matematis, bisa ditulis sebagai berikut :

viskositas-b1Sebelumnya, gurumuda sudah menjelaskan bahwa Fluida yang lebih cair biasanya lebih mudah mengalir, sebaliknya fluida yang lebih kental lebih sulit mengalir. Tingkat kekentalan fluida dinyatakan dengan koofisien viskositas. Nah, jika fluida makin kental maka gaya tarik yang dibutuhkan juga makin besar. Dalam hal ini, gaya tarik berbanding lurus dengan koofisien kekentalan. Secara matematis bisa ditulis sebagai berikut :

viskositas-c

Keterangan :

viskositas-d

Satuan Sistem Internasional (SI) untuk koofisien viskositas adalah Ns/m2 = Pa.s (pascal sekon). Satuan CGS (centimeter gram sekon) untuk si koofisien viskositas adalah dyn.s/cm2 = poise (P). Viskositas juga sering dinyatakan dalam sentipoise (cP). 1 cP = 1/100 P. Satuan poise digunakan untuk mengenang seorang Ilmuwan Perancis, almahrum Jean Louis Marie Poiseuille (baca : pwa-zoo-yuh).

1 poise = 1 dyn . s/cm2 = 10-1 N.s/m2

Fluida

Temperatur (o C)

Koofisien Viskositas

Air 0 1,8 x 10-3
20 1,0 x 10-3
60 0,65 x 10-3
100 0,3 x 10-3
Darah (keseluruhan) 37 4,0 x 10-3
Plasma Darah 37 1,5 x 10-3
Ethyl alkohol 20 1,2 x 10-3
Oli mesin (SAE 10) 30 200 x 10-3
Gliserin 0 10.000 x 10-3
20 1500 x 10-3
60 81 x 10-3
Udara 20 0,018 x 10-3
Hidrogen 0 0,009 x 10-3
Uap air 100 0,013 x 10-3

Persamaan Poiseuille

Sebelumnya kita sudah mempelajari konsep2 viskositas dan menurunkan persamaan koofisien viskositas. Pada kesempatan ini akan berkenalan dengan persamaan Poiseuille. Disebut persamaan Poiseuille, karena persamaan ini ditemukan oleh almahrum Jean Louis Marie Poiseuille (1799-1869).

Seperti yang sudah gurumuda jelaskan di awal tulisan ini, setiap fluida bisa kita anggap sebagai fluida ideal. Fluida ideal tidak mempunyai viskositas alias kekentalan. Jika kita mengandaikan suatu fluida ideal mengalir dalam sebuah pipa, setiap bagian fluida tersebut bergerak dengan laju (v) yang sama. Berbeda dengan fluida ideal, fluida riil alias fluida yang kita jumpai dalam kehidupan sehari-hari mempunyai viskositas. Karena mempunyai viskositas, maka ketika mengalir dalam sebuah pipa, misalnya, laju setiap bagian fluida berbeda-beda. Lapisan fluida yang berada tengah-tengah bergerak lebih cepat (v besar), sebaliknya lapisan fluida yang nempel dengan pipa tidak bergerak alias diam (v = 0). Jadi dari tengah ke pinggir pipa, setiap bagian fluida tersebut bergerak dengan laju yang berbeda-beda. Untuk memudahkan pemahamanmu, amati gambar di bawah….

viskositas-1

Keterangan :

R = jari-jari pipa/tabung

v1 = laju aliran fluida yang berada di tengah/sumbu tabung

v2 = laju aliran fluida yang berjarak r2 dari pinggir tabung

v3 = laju aliran fluida yang berjarak r3 dari pinggir tabung

v4 = laju aliran fluida yang berjarak r4 dari pinggir tabung

r = jarak

Gambar ini cuma ilustrasi saja. Oya, lupa… laju setiap bagian fluida berbeda-beda karena adanya kohesi dan adhesi (mirip seperti penjelasan sebelumnya, ketika kita menurunkan persamaan koofisien viskositas). Si viskositas bikin fluida sebel… ;) Fluida terseok-seok dalam pipa (tabung). Hehe….

Agar laju aliran setiap bagian fluida sama, maka perlu ada perbedaan tekanan pada kedua ujung pipa atau tabung apapun yang dilalui fluida. Yang dimaksudkan dengan fluida di sini adalah fluida riil/nyata, jangan lupa ya. Contohnya air atau minyak yang ngalir melalui pipa, darah yang mengalir dalam pembuluh darah dkk… Selain membantu suatu fluida riil mengalir dengan lancar, perbedaan tekanan juga bisa membuat si sluida bisa mengalir pada pipa yang ketinggiannya berbeda.

Almahrum Jean Louis Marie Poiseuille, mantan ilmuwan perancis ;) yang tertarik pada aspek-aspek fisika dari peredaraan darah manusia, melakukan penelitian untuk menyelidiki bagiamana faktor-faktor, seperti perbedaan tekanan, luas penampang tabung dan ukuran tabung mempengaruhi laju fluida riil. (sstt.. pembuluh darah kita juga bentuknya mirip pipa, cuma ukurannya kecil sekali). Hasil yang diperoleh Almahrum Jean Louis Marie Poiseuille, dikenal dengan julukan persamaan Poiseuille.

Sekarang mari kita oprek persamaan almahrum Poiseuille. Persamaan Poiseuille ini bisa kita turunkan menggunakan bantuan persamaan koofisien viskositas yang telah kita turunkan sebelumnya. Kita gunakan persamaan viskositas karena kasusnya mirip walau tak sama…. Ketika menurunkan persamaan koofisien viskositas, kita meninjau aliran lapisan fluida riil antara 2 pelat sejajar dan fluida tersebut bisa bergerak karena adanya gaya tarik (F). Bedanya, persamaan Poiseuille yang akan kita turunkan sebenarnya menyatakan faktor-faktor yang mempengaruhi aliran fluida riil dalam pipa/tabung dan fluida mengalir akibat adanya perbedaan tekanan. Karenanya, persamaan koofisien viskositas perlu dioprek dan disesuaikan lagi. Kita tulis persamaannya dulu ya…

viskositas-2Karena fluida bisa mengalir akibat adanya perbedaan tekanan (fluida mengalir dari tempat yang tekanannya tinggi ke tempat yang tekanannya rendah), maka F kita ganti dengan p1-p2 (p1 > p2).

viskositas-3Ketika menurunkan persamaan koofisien viskositas, kita meninjau aliran lapisan fluida riil antara 2 pelat sejajar. Setiap bagian fluida tersebut mengalami perubahan kecepatan teratur sejauh l. Untuk kasus ini, laju aliran fluida mengalami perubahan secara teratur dari sumbu tabung sampai ke tepi tabung. Fluida yang berada di sumbu tabung mengalir dengan laju (v) yang lebih besar. Semakin ke pinggir, laju fluida semakin kecil. Jari-jari tabung = jarak antara sumbu tabung dengan tepi tabung = R. Jarak antara setiap bagian fluida dengan tepi tabung = r. Karena jumlah setiap bagian fluida itu sangat banyak dan jaraknya dari tepi tabung juga berbeda-beda, maka kita cukup menulis seperti ini :

v1 = laju fluida yang berada pada jarak r1 dari tepi tabung (r1 = R)

v2 = laju fluida yang berada pada jarak r2 dari tepi tabung (r2 <>1)

v3 = laju fluida yang berada pada jarak r3 dari tepi tabung (r3 <>2 <>1)

v4 = laju fluida yang berada pada jarak r4 dari tepi tabung (r4 3 <>2 <>1)

………………………………………..

vn = laju fluida yang berada pada jarak rn dari tepi tabung (rn < …… <>4 <>3 <>2 <>1)

Jumlah setiap bagian fluida sangat banyak dan kita juga tidak tahu secara pasti berapa jumlahnya yang sebenarnya, maka cukup ditulis dengan simbol n. Setiap bagian fluida mengalami perubahan laju (v) secara teratur, dari sumbu tabung (r1 = R) sampai tepi tabung (rn). Dari sumbu tabung (r1 = R) ke tepi tabung (rn), laju setiap bagian fluida makin kecil (v1 > v2 > v3 > v4 > …. > vn). Cara praktis untuk menentukan jarak terjadinya perubahan laju aliran fluida riil dalam tabung adalah menggunakan kalkulus. Tapi kalau pakai kalkulus malah gak nyambung alias beribet….. Dari penjelasan di atas, kita bisa punya gambaran bahwa dari R ke rn, laju fluida semakin kecil. Ingat ya, panjang pipa = L. Jika dioprek dengan kalkulus, akan diperoleh persamaan :

viskositas-4Wuh, bahasa apa ini. he2…. Ini adalah persamaan laju aliran fluida pada jarak r dari pipa yang berjari-jari R. Kalau bingung sambil lihat gambar di atas…. Perlu diketahui bahwa fluida mengalir dalam pipa alias tabung, sehingga kita perlu meninjau laju aliran volume fluida tersebut. Cara praktis untuk menghitung laju aliran volume fluida juga menggunakan kalkulus. Gurumuda jelaskan pengantarnya saja…

Di dalam tabung ada fluida. Misalnya kita membagi fluida menjadi potongan-potongan yang sangat kecil, di mana setiap potongan tersebut mempunyai satuan luas dA, berjarak dr dari sumbu tabung dan mempunyai laju aliran v. Secara matematis bisa ditulis sebagai berikut :

dA1 = potongan fluida 1, yang berjarak dr1 dari sumbu tabung

dA2 = potongan fluida 2, yang berjarak dr2 dari sumbu tabung

dA3 = potongan fluida 3, yang berjarak dr3 dari sumbu tabung

…………………………….

dAn = potongan fluida n, yang berjarak drn dari sumbu tabung

Potongan2 fluida sangat banyak, sehingga cukup ditulis dengan simbol n saja, biar lebih praktis (n = terakhir). Laju aliran volume setiap potongan fluida tersebut, secara matematis bisa ditulis sebagai berikut :

viskositas-5Setiap potongan fluida tersebut berada pada jarak r = 0 sampai r = R (R = jari-jari tabung). Dengan kata lain, jarak setiap potongan fluida tersebut berbeda-beda jika diukur dari sumbu tabung. Jika kita oprek dengan kalkulus (diintegralkan), maka akan diperoleh persamaan laju aliran volume fluida dalam tabung :

viskositas-6

Keterangan :

viskositas-7

Berdasarkan persamaan Poiseuille di atas, tampak bahwa laju aliran volume fluida alias debit (Q) sebanding dengan pangkat empat jari-jari tabung (R4), gradien tekanan (p2-p1/L) dan berbanding terbalik dengan viskositas. Jika jari-jari tabung ditambahkan (koofisien viskositas dan gradien tekanan tetap), maka laju aliran fluida meningkat sebesar faktor 16. Kalau dirimu mau kuliah di bagian teknik perledingan atau teknik pertubuhan, pahami persamaan almahrum Poiseuille ini dengan baik. Konsep dasar perancangan pipa, jarum suntik dkk menggunakan persamaan ini. Debit fluida sebanding dengan R4 (R = jari-jari tabung). Karenanya, jari-jari jarum suntik atau jari-jari pipa perlu diperhitungkan secara saksama. Misalnya, jika kita menggandakan jari-jari dalam jarum (r x 2), maka debit cairan yang nyemprot = menaikan gaya tekan ibu jari sebesar 16 kali. Salah hitung bisa overdosis… he2…..

Persamaan almahrum Poiseuille juga menunjukkan bahwa pangkat empat jari-jari (r4), berbanding terbalik dengan perbedaan tekanan antara kedua ujung pipa. Misalnya mula-mula darah mengalir dalam pembuluh darah yang mempunyai jari-jari dalam sebesar r. Kalau terdapat penyempitan pembuluh darah (misalnya r/2 = jari-jari dalam pembuluh darah berkurang 2 kali), maka diperlukan perbedaan tekanan sebesar 16 kali untuk membuat darah mengalir seperti semula (biar debit alias laju aliran volume darah tetap). Coba bayangkan… apa jantung gak copot gitu, kalau harus kerja keras untuk memompa biar darahnya bisa ngalir dengan debit yang sama… makanya kalau orang yang mengalami penyempitan pembuluh darah bisa kena tekanan darah tinggi, bahkan stroke karena jantung dipaksa untuk memompa lebih keras. Demikian juga orang yang gemuk, punya banyak kolesterol yang mempersempit pembuluh darah. Pembuluh darah nyempit dikit aja, jantung harus lembur… mending langsing saja, biar pembuluh darah normal, jantung pun ikut2an senang. Kalau si jantung gak lembur khan dirimu ikut2an senang, pacaran jalan terus… he2….

Referensi

Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga

Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga

Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga

Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga

http://www.gurumuda.com/2009/03/